Warm-up: Solve the following equations.

1.
$$5^x = 25$$
 2. $2^x = 8$ 3. $7^x = 7$ 4. $4^x = 1$ 5. $2^x = 5$

Examples: Write in Logarithmic Form

1. $5^2 = 25$ 2. $3^6 = 729$ 3. $10^0 = 1$ 4. $\left(\frac{1}{2}\right)^3 = \frac{1}{8}$

Examples: Evaluate the following logarithms (
5. <i>log</i> ₈ 16	6. <i>log</i> ₉ 27	7. <i>log</i> ₁₀ 100	8. $log_{64}\left(\frac{1}{32}\right)$						

A *common logarithm* is a logarithm that uses base _____. You can write the common log as:

_____ or _____.

A logarithmic function is the inverse of the ______.

Graphing Logarithmic Functions

Graph $y = 2^x$:

х	-2	-1	0	1	2	3
У						

Graph $y = log_2 x$:

Examples: Describe the translations (shifts) and sketch the graph.

9.
$$y = log_6(x - 2) + 3$$

10.
$$y = log_3(x+4) - 1$$

